Polarimetry at RHIC

A. Bravar, I. Alekseev, G. Bunce, S. Dhawan, R. Gill, W. Haeberli, H. Huang, G. Igo, O. Jinnouchi, K. Kurita, A. Khodinov, Z. Li, Y. Makdisi, A. Nass, H. Okada, S. Rescia, N. Saito, H. Spinka, E. Stephenson, D. Svirida, D. Underwood, C. Whitten, T. Wise, J. Wood, A. Zelenski

Polarimetry: Impact on Spin Physics

- measured spin asymmetries normalized by P_B to extract Physics Spin Observables
- RHIC Spin Program requires $\Delta P_{beam} / P_{beam} < 0.05$
- normalization \Rightarrow scale uncertainty
- polarimetric process with large σ and known A_N
 - pC elastic scattering in CNI region
 - A_N almost calculable, but small $\sim 1 4 \%$
 - absolute "calibration": elastic *pp* scattering with polarized gas-jet target

Elastic $pC \rightarrow pC$ scattering at low t

- 1. A_N from interference of spin non-flip and spin flip (helicity) amplitudes
 - ⇒ spin dependence of interaction
 - ⇒ hadronic spin flip (spin-coupling of Pomeron)
- 2. Polarimetry
 - almost "calculable"
 - small $A_N \sim 1-4 \% \Rightarrow$ requires large statistics $> 10^7$
 - large cross section
 - weak beam momentum dependence (p > 20 GeV/c) ?

A_N: from where does it come?

$$\sigma = |A_{\text{hadronic}} + A_{\text{Coulomb}}|^2 \quad (|P + \gamma|^2)$$

around t ~
$$-10^{-3}$$
 (GeV/c)² A_{hadronic} \approx A_{Coulomb} \Rightarrow INTERFERENCE
CNI = Coulomb – Nuclear Interference

unpolarized \Rightarrow clearly visible in the cross section d σ /dt (charge)

polarized \Rightarrow left – right asymmetry A_N

(magnetic moment)

$$A_{N} = C \Phi_{em}^{flip} \Phi_{had}^{non-flip} + C_{2} \Phi_{had}^{non-flip} \Phi_{had}^{flip}$$

$$\propto (\mu - 1)_{p} \qquad \propto \sqrt{\sigma_{had}^{pp}}_{had}$$

QED \Rightarrow "calculable", expect $A_N \neq 0$ up to 4 - 5%

$$A_N^{int} = \sigma_{tot} \times \frac{\alpha}{m_p \sqrt{-t}} \frac{\mu_p - 1}{2} \frac{1}{\sigma_{tot}^2 / 16\pi + 4\pi\alpha^2 / t^2}$$

hadronic non-flip EM spin flip

QCD ⇒ "unpredictable", need direct measurement

$$\frac{\mu_p - 1}{2} \to \frac{\mu_p - 1}{2} - I_5 + \frac{\mu_p - 1}{2}I_2$$

Some A_N measurements in CNI region

if used for polarimetry $\Rightarrow \Delta P/P \sim 15 - 20\%$

RHIC: the "Polarized" Collider

70% Polarization $L_{\text{max}} = 2 \times 10^{32} \text{ s}^{-1} \text{cm}^{-2}$ 50 < \sqrt{s} < 500 GeV

Elastic pTC Scattering Setup in the AGS Ring

similar setups in RHIC for each beam

24 mm

No More Beam Induced Pickups...

NO BEAM CHARGE INDUCED SIGNAL!!!

(Up to 2·10¹¹ p/bunch)

- ➤ Top secret: every second line IS GROUND the whole way down to the very strip
- ➤ No pileup in the preamp
- ightharpoonup Lower limit in -t is only by the detector noise
- \triangleright No upper limit on -t
- \triangleright Can see real relativistic (fast) particles from the target – good T_0 definition (the rate is of the same order as carbons or higher)

Performance

- Very clean data
- \triangleright Good separation of carbon from prompts may allow going to very high -t values
- \triangleright Low χ^2 of sequential measurements stable operation

Si Detector and Energy Loss

at $t \sim -0.01$ (GeV/c)², Energy of recoil Carbon E_{kin} \sim few 100 keV $(E_{kin} = -t/2M_C)$

range in Silicon, only fraction of micrometer substantial fraction of Carbon energy lost in dead layer (entrance window) correct E_{kin} for energy loss \rightarrow energy scale error

important to minimize energy losses in dead layer of detector

top view of Si strip eting

Alessandro Bravar

DAQ and WFD

Wave Form Digitizer = peak sensing ADC, CFD, ... deadtimless DAQ system \Rightarrow no spin dependent dead time! can accept, analyze, and store 1 event / each bunch ×-ing event rate: up to 10^5 ev/ch/sec

p\c raw asymmetry at 24.3 GeV

$$P_{beam} = rac{1}{\left\langle A_N
ight
angle} \cdot oldsymbol{arepsilon}_N$$

$$\langle A_N \rangle = \frac{\sum N(t_i) A_N^{th}(t_i)}{\sum N(t_i)}$$

calculated over several t bins

A_Nth from a fit to E950 data at 21.7 GeV over similar t range L. Trueman hep-ph/0305085

$$\langle A_{\mathbf{N}} \rangle \approx 1.12$$

 $0.009 < |\mathbf{t}| < 0.022 \, (\text{GeV}/c)^2$

AGS Polarization during acceleration (ramp)

imperfection: $G\gamma = n$

RHiC & AGS Users' Meeting

Alessandro Bravar

AGS Polarization Systematics

no false asymmetries visible positive and negative beam polarizations give same asymmetries

Spin Dynamics

Spin Precession in Laboratory Frame:

(Thomas [1927], Bargmann, Michel, Telegdi [1959])

$$dS/dt = -(e/\gamma m) [(G\gamma + 1)B_{\perp} + (1+G) B_{o}] \times S$$
 $G\gamma = 1.91 E$

Lorentz Force

$$d\mathbf{v}/dt = -(e/\gamma m) [$$
 \mathbf{B}_{\perp}

For pure vertical field:

Spin rotates Gy times faster than motion, $v_{sp} = Gy$

<u>Imperfection resonance</u> (magnet errors and misalignments, closed orbit errors, ...):

$$G\gamma = v_{sp} = n$$

Intrinsic resonance (vertical focusing fields like in quadrupoles, finite beam emittance, ...):

$$\mathbf{G}\gamma = \mathbf{v}_{\mathrm{sp}} = \mathbf{P}\mathbf{n} \pm \mathbf{v}_{\mathrm{y}}$$

Imperfection Resonances: Gy = n

partial snake (AGS) = imperfection resoance

if snake sufficiently strong (5% enough in AGS) spin is fully flipped when crossing an imperfection resonance with no polarization loss

for $G\gamma \neq n$, spin "oscillates" around stable direction, which is tilted from the vertical

Intrinsic Resonances: $G\gamma = nP + v$

betatron oscillation of frequency v if spin precession "in phase" with betatron oscillation $G\gamma = v$ when crossing the quadrupole depolarizing kicks δ add \Rightarrow depolarizing resonance condition

to be in phase with betatron oscillation over a closed orbit spin must precess n + v times

in a periodic accelerator spin "in phase" with betatron oscillation when crossing same quadrupole in consecutive FODO section if

$$G\gamma = nP + v$$

Polarization losses reduced / avoided by forcing a full spin reversal (flip) using an RF dipole

RHiC & AGS Users' Meeting

$A_{N} p \uparrow C \rightarrow p C$ at 3.9, 6.5, 9.7 & 21.7 GeV

momentum transfer –t (GeV²/ c^2)

only statistical errors are shown

normalization errors:

- $\sim 10 \%$ (at 3.9)
- $\sim 15 \%$ (at 6.5)
- $\sim 20 \%$ (at 21.7)

systematic errors:

- < 20 %
- backgrounds
- pileup
- RF noise

PPOOVURVEN

$A_N \not p \uparrow C \rightarrow p C$: Energy Dependence

RHiC & AGS Users' Meeting

Alessandro Bravar

RHIC Polarimeters

RHIC x 2 rings

- Detectors are *15cm* away from target → slowest carbons can reach Si during one bunch crossing (106 nsec = 120 bunch mode)
- 2 x 72 channels read out with WFD (increased acceptance by 2 x)
- All Si strips parallel to the beam
- Si at 45 degree : sensitive to vertical and radial components of asymmetry

Polarization Measurements in RHIC

- Polarization routinely measured at injection and flattop (by now several hundred measurements)
- Detailed study of polarization behavior in RHIC
- For normalization / P $_{beam}$ assume A_N (24.3 GeV) = A_N (100 GeV) (i.e. no energy dependence)
- Polarization profile measurements
- Several ramp measurements
- Spin tune measurements

The Absolute pp Polarimeter

JET in the IR

Polarized Hydrogen Gas Jet Target

thickness of $> 10^{12} \,\mathrm{p/cm^2}$

polarization > 90% (~95%!)

no depolarization from beam wake fields

Silicon recoil spectrometer

Measure A_N^{pp} in pp elastic scattering

in the CNI region to $\Delta A_N < 10^{-3}$ accuracy

Initially (2004) measure P_B to 10%

The Road to P_{beam}

Requires several independent measurements

- 0 target polarization P_{target} (Breit-Rabi polarimeter)
- 1 A_N for elastic *pp* in CNI region: $A_N = 1 / P_{target} \varepsilon_N'$
- 2 $P_{beam} = 1 / A_N \epsilon_N''$ 1 & 2 can be combined in a single measurement: $P_{beam} / P_{target} = -\epsilon_N' / \epsilon_N''$ "self calibration" works for elastic scattering only
- 3 CALIBRATION: A_N^{pC} for pC CNI polarimeter in detector kinematical range: $A_N^{pC} = 1 / P_{beam} \epsilon_N'''$ (1 +) 2 + 3 measured simultaneously with several insertions of carbon target
- 4 BEAM POLARIZATION: $P_{beam} = 1 / A_N^{pC} \epsilon_N''''$ to experiments

at each step pick-up some measurement errors:

$$\frac{\Delta P_{beam}}{P_{beam}} = \left(\frac{\Delta P_{t\,arg\,et}}{P_{t\,arg\,et}}\right) \oplus \left(\frac{\Delta \varepsilon}{\varepsilon}\right)_{pp} \oplus \left(\frac{\Delta A_N}{A_N}\right)_{pC} \oplus \left(\frac{\Delta \varepsilon}{\varepsilon}\right)_{pC} \le 6\% \quad \text{expected} \quad \text{precision}$$

transfer calibration measurement

Principle

$$t = (p_{out} - p_{in})^2 < 0$$

recoil proton

$$A_{N}(t) = \frac{1}{P_{target}} \cdot \frac{d\sigma(\varphi + \pi)/d\varphi - d\sigma(\varphi)/d\varphi}{d\sigma(\varphi + \pi)/d\varphi + d\sigma(\varphi)/d\varphi}$$

$$P_{beam} = \frac{1}{A_N} \cdot \frac{N_{left} - N_{right}}{N_{left} + N_{right}}$$

$$A_N^{\text{beam}}(t) = -A_N^{\text{target}}(t)$$

for elastic scattering only!

$$P_{Beam} = -P_{Target} \cdot \epsilon_N^{Beam} / \epsilon_N^{Target}$$

Kinematics

$$|t| : 0.001 - 0.02 \text{ GeV}^2$$

 $\vartheta_{\mathbf{R}}: 1-5 \text{ degrees}$

 $T_{kin}: 0.5 - 10 \text{ MeV}$

 $p_R : 30 - 140 \text{ MeV/c}$

tof: 100 - 20 nsec (@ 1m)

essentially 1 free parameter: $t (+ \varphi) \Rightarrow$

elastic pp kinematics fully constrained by recoil proton only!

$$\sin \theta_R \approx \left(1 + \frac{m_p}{p_{beam}}\right) \frac{\sqrt{|t|}}{2m_p}$$
 $t = -2m_p T_{kin}$
measure position and energy of recoil \Rightarrow
 $\theta_R \& t$

$$tof \approx 1/\sqrt{2T_{kin}/m_p} \cdot D$$
 \Rightarrow additional kinematical constraint

$$\vartheta_R \& E_R \Rightarrow m_{\text{beam}} (M_X); \text{ tof } \& E_R \Rightarrow m_{\text{target}}$$

Recoil spectrometer

6 Si detectors covering
the blue beam =>

MEASURE
energy (res. < 50 keV)
time of flight (res. < 2 ns)
scattering angle
of recoil protons from
pp -> pp elastic scattering

HAVE "design" azimuthal coverage

one Si layer only

- ⇒ smaller energy range
- ⇒ reduced bkg rejection power

Si Detector Design

double sided readout (opt.) $72 \times 64 \text{ mm}^2$ thickness 500 microns p^+ side pitch 1 mm

readout pitch 4 mm n^+ side pitch 4 mm $C \approx 20 \text{ pF} / \text{strip } (p^+ \text{ side})$ 80 pF / readout ch.

energy loss in dead layer less critical for protons however same design as for pC detectors to minimize it

Jet-Target Holding Magnetic Field (1.0)

Helmholtz coils

almost no effect on recoil proton trajectories:

left – right hit profiles & left – right acceptances almost equal (also under reversal of holding field)

BROOKE

Gas JET Target Profile

measured selecting elastic pp scattering events

hor. pos. of JET 10000 cts. = 2.5 mm

Time of Flight vs. Energy recoil protons

Energy - Position correlations

RHiC & AGS Users' Meeting

Alessandro Bravar

Missing Mass M_X² @ 100 GeV

Alessandro Bravar

BROOKHAVEN NATIONAL LABORATORY

Statistics needed for \triangle P / P \sim 10 %

For rate estimates we select pp elastic scattering events in $1 < E_{recoil} < 2 \text{ MeV}$ -> ~ ½ of useful x-section

$$\wedge$$
 ToF < 7.5 ns

=>2 Hz rate for 40 x 10^{11} protons in RHIC

$$\triangle P \sim 1/A_N \times \triangle \varepsilon_N \sim 30 \times \triangle \varepsilon_N$$

$$P_{beam} = 50 \% => \Delta P_{beam} = 5 \% => \Delta \epsilon_{N} = 0.0015 => 450 \text{ k ev}$$

$$P_{beam} = 30 \% => \Delta P_{beam} = 3 \% => \Delta \epsilon_{N} = 0.001 => 1,000 \text{ k ev}$$

 $^{\mbox{NB}}$ once we have \mbox{P}_{beam} we have to measure / calibrate $\mbox{A}_{N}{}^{p\mbox{C}}$ for the carbon polarimeters

Acquired statistics:

- ~ 440,000 "events" @ 100 GeV (~ 2 x 10⁶ useful *pp* events)
- $\sim 120,000$ "events" @ 24 GeV ($\sim 5 \times 10^5$ useful *pp* events)

Summary

- polarimetry works reliably
- fast measurements of P_{beam} in few min (AGS) / 30 sec (RHIC)
- several hardware issues solved since last year (it is clear what needs to be improved...)
- polarized gas jet target works beautifully (target, recoil spectrometer, ...)
- Acquired enough statistics for a first measurement of P_{Beam} to at least 10% (@ 100 GeV)

